The conservative management of acute pyogenic iliopsoas abscess in children

C. W. C. Tong, J. F. Griffith, T. P. Lam, J. C. Y. Cheng

From the Prince of Wales Hospital, Hong Kong

We describe three cases of acute pyogenic abscess of the iliopsoas in children treated conservatively. Two patients had image-guided aspiration and one was managed with antibiotics alone. All made a complete recovery.

Acute pyogenic abscess of the iliopsoas in children can be treated effectively and safely with intravenous antibiotics and image-guided aspiration of the abscess.

Received 27 May 1998; Accepted 16 July 1997

Acute pyogenic abscess of the iliopsoas is uncommon in children. The clinical presentation is variable and may be confused with other conditions such as septic arthritis of the hip, osteomyelitis or an appendicular abscess. A high index of suspicion and awareness of the varying clinical presentation are required to diagnose this condition promptly. Traditionally, it has been treated by operative drainage. With modern techniques of imaging such as ultrasound and CT, image-guided percutaneous drainage is now possible. We describe three cases in children who were treated conservatively.

Case Reports

Between January 1992 and December 1995 three children were admitted to our hospital with acute pyogenic abscess of the iliopsoas. Table I gives the clinical details.

Case 1. The initial CT showed a diffusely enlarged right iliacus muscle with adjacent early sacroilitis (Figs 1a and 1b). Intravenous cloxacillin and ceftazidime were given and two days later she was afebrile. After 15 days, however, the fever returned and a further CT showed a well-defined abscess in the right iliacus muscle (Fig. 1c) with worsening sacroilitis (Fig. 1d). The abscess was aspirated percutaneously using a 20 G needle under local anaesthesia and CT guidance (Fig. 1e), yielding thick pus which grew Staphylococcus aureus. Intravenous antibiotics were continued for a further four weeks, with full recovery (Fig. 1f).

Case 2. An ultrasound scan of the abdomen and hips showed a hypoechoic area 3 × 5 × 6 cm in size in the left iliacus muscle suggesting an abscess (Fig. 2a). This was aspirated under local anaesthesia and ultrasound guidance using an 18 G spinal needle yielding 40 ml of pus which grew Staphylococcus aureus (Fig. 2b). Intravenous cloxacillin was started and the patient’s temperature decreased. Repeat ultrasound investigation showed that the abscess had increased again requiring further aspiration. CT six days later showed it to be much smaller (Fig. 2c). Antibiotics were continued for six weeks leading to a full recovery.

Case 3. Ultrasound investigation of the abdomen was equivocal in that the psoas muscle was not well seen due to gas in the overlying bowel. CT showed a bulky right psoas muscle with a hypoechoic lesion 1 × 2 cm in size, consistent with an abscess. The hip was normal. The abscess was small and was not aspirated. Intravenous cloxacillin and ceftazidime were started and the temperature returned to normal on the third day. Further ultrasound investigation on the seventh day showed complete resolution of the abscess. Treatment with antibiotics was continued for four weeks with full recovery.

Discussion

Acute pyogenic abscess of the iliopsoas is uncommon in children and only a small number of cases have been reported. The diagnosis is based on clinical laboratory and radiological findings. The clinical presentation is very variable and can include pain or a mass in the iliac fossa or central abdomen, pain and flexion deformity of the hip, limp and fever. In our patients the commonest presenting features were pyrexia and a limp. The hip was held in
Table I. Details of the clinical presentation, investigations and treatment in three patients with acute pyogenic abscess of the iliopsoas

<table>
<thead>
<tr>
<th>Case</th>
<th>Sex</th>
<th>Age (yr)</th>
<th>Duration symptoms (days)</th>
<th>Initial symptoms</th>
<th>Physical findings</th>
<th>WCC (x10^9/l)</th>
<th>ESR (mm/hr)</th>
<th>Radiological findings</th>
<th>Treatment</th>
<th>Causative organism</th>
<th>Follow-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>8</td>
<td>4</td>
<td>Right hip and knee pain, limp</td>
<td>Hip held in flexion Painful extension</td>
<td>16.6</td>
<td>115</td>
<td>US* normal CT showed enlarged right iliacus + abscess formation</td>
<td>CT-guided aspiration + intravenous antibiotics</td>
<td>Staph. aureus</td>
<td>Full recovery</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>4</td>
<td>3</td>
<td>Left hip pain, general irritability</td>
<td>Hip held in flexion Painful extension Unable to walk</td>
<td>22.6</td>
<td>60</td>
<td>US showed 3 × 5 × 6 cm abscess in left iliacus</td>
<td>US-guided aspiration (twice) + intravenous antibiotics</td>
<td>Staph. aureus</td>
<td>Full recovery</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>3</td>
<td>3</td>
<td>Right groin and hip pain after a fall</td>
<td>Hip held in flexion Painful extension Limp</td>
<td>19</td>
<td>117</td>
<td>CT showed bulky right psoas with 2 × 1 cm abscess</td>
<td>Intravenous antibiotics</td>
<td>Staph. aureus</td>
<td>Full recovery</td>
</tr>
</tbody>
</table>

* ultrasound

Case 1. Fig. 1a – Axial non-contrasted CT shows a diffusely swollen right iliacus muscle (white arrows) with a central area of low density (black arrow) due to an early abscess. Fig. 1b – Bone window shows early subchondral cortical destruction on both sides of the right sacroiliac joint (arrow) indicating early sacroiliitis. Fig. 1c – Axial CT on day 13. The right iliacus muscle remains swollen and the abscess (arrow) is better defined. Fig. 1d – Bone window shows that the sacroiliitis has progressed. Fig. 1e – CT-guided needle aspiration (arrows), avoiding the bowel and vessels, yielded pus. Fig. 1f – Axial CT two months later shows complete resolution of the abscess cavity and muscle swelling. Bone-window settings (not shown) confirmed reparative changes in the right sacroiliac joint.
flexion with pain on passive extension. It is important to
differentiate between primary disease of the hip and an
iliopsoas abscess as both give pain in the hip. Passive
rotation in flexion was possible in all our cases whereas in
primary disease of the hip resistance would have been
likely. Further differentiating factors include posterior
tenderness in hip disease and pain on rectal examination in
an iliopsoas abscess. Trauma may be a predisposing
factor. Modern imaging techniques allow more rapid diagnosis
of iliopsoas pathology. Ultrasound is quick, safe, cheap
and readily available, but CT has the advantage of con-
sistently identifying the iliopsoas muscles and also showing
adjacent bony structures. It is unlikely that even coned
diagrams of the sacroiliac joint would have shown the
early change seen in case 1. CT is more expensive, how-
ever, and involves ionising radiation, which is particularly
hazardous in children. It is also less readily available in
developing countries where iliopsoas abscess is relatively
more common.

In the two largest series of the condition reported by Lam
and Hodgson, and Parbhoo and Govender all patients
were treated by surgical drainage. Malhotra et al. felt that
eye operative drainage and administration of systemic
antibiotics were the best treatment.

Image-guided percutaneous drainage of an iliopsoas
abscess has mainly been described in adults, although Golli et al. reported six children with the condition, two of
whom had CT-guided percutaneous drainage. This proce-
dure is minimally invasive and avoids an operation with the
need for general anaesthesia. In two of our patients aspira-
tion led to complete resolution without the need for percu-
taneous drainage. It also provided material for culture and
thus appropriate antibiotic cover. Aspiration can be repeat-
ed if necessary and does not preclude operation at a later
stage.

Acute pyogenic abscess of the iliopsoas is uncommon in
children and a high index of suspicion is required to
diagnose the condition promptly. Ultrasound and CT are
useful in the diagnosis. It can be treated effectively and
safely by intravenous antibiotics and image-guided aspira-
tion without the need for surgery.

No benefits in any form have been received or will be received from a
commercial party related directly or indirectly to the subject of this
article.

References
3. Lam SF, Hodgson AR. Non-spinal pyogenic psoas abscess. J Bone
5. Malhotra R, Singh KD, Bhan S, Dave PK. Primary pyogenic abscess
8. Simons GW, Sty JR, Starshak RJ. Letter. Primary pyogenic abscess
Iliopsoas abscess: treatment by CT-guided percutaneous catheter