THE THREE-DIMENSIONAL GEOMETRY OF THE PROXIMAL HUMERUS
IMPLICATIONS FOR SURGICAL TECHNIQUE AND PROSTHETIC DESIGN

P. BOILEAU, G. WALCH

From the Medical University Hospital of Nice and Lyon, France

We have studied the three-dimensional geometry of the proximal humerus on human cadaver specimens using a digitised measuring device linked to a computer. Our findings demonstrated the variable shape of the proximal humerus as well as its variable dimensions. The articular surface, which is part of a sphere varies individually in its orientation as regards inclination and retroversion, and it has variable medial and posterior offsets.

These variations cannot be accommodated by the designs of most contemporary humeral components. Although good clinical results can be achieved with current modular and non-modular components their relatively fixed geometry prevents truly anatomical restoration in many cases.

To try to restore the original three-dimensional geometry of the proximal humerus, we have developed a new type of humeral component which is modular and adaptable to the individual anatomy. Such adaptability allows correct positioning of the prosthetic head in relation to an individual anatomical neck, after removal of the marginal osteophytes. The design of this third-generation prosthesis respects the four geometrical variations which have been demonstrated in the present study. These are inclination, retroversion, medial offset and posterior offset.

Received 8 January 1997; Accepted after revision 21 March 1997

Clinical studies of total shoulder arthroplasty have shown that restoration of the normal anatomy of the proximal humerus is desirable. This affects the lever arms of the deltoid and rotator cuff in the vertical plane and soft-tissue balance in the horizontal plane. Changes in this anatomy may produce abnormal kinematics by malpositioning the joint line and by moving the instant centres of rotation. There may also be an effect on the fixation of the glenoid component from increased loads in the long term.

Despite this, few studies have examined the detailed anatomy of the proximal humerus and these have usually focused on its dimensions rather than its three-dimensional geometry. Our experience with shoulder arthroplasty has shown consistent difficulties in recreating the normal anatomy, and we have indicated in a previous cineradiological study that active elevation of a prosthetic shoulder produces abnormal kinematics.

We report a detailed anthropometric study of the geometry of the proximal humerus, suspecting that this may not be as simple as has been previously reported. We considered that the articular surface may show variable orientation and translation in both the coronal and axial planes.

MATERIALS AND METHODS

We made surface measurements on fresh human cadaver specimens using a digitised measuring system to allow three-dimensional computerised modelling of the bones. There were three stages: first, we verified the sphericity of the cartilaginous surface, secondly we studied the distribution of the diameter and depth of the articular surface, and thirdly we defined both the orientation (inclination and retroversion) and location (possible anteroposterior and/or mediolateral offsets) of the articular surface.

From fresh Caucasian cadavers we obtained 65 humeri (32 left, 33 right; 26 paired) and dissected off all soft tissue, taking care to avoid damage to the articular cartilage. They came from 19 men and 20 women; their ages ranged from 67 to 95 years (mean 86 ± 13 years). We excluded specimens which showed any evidence of osteoarthritis, osseous pathology, or previous fractures.

A highly accurate three-dimensional digitised measuring
A machine (Metrologic MTI; Metrologic Instruments, Meylan, France) was equipped with a special frame to hold a humerus (Fig. 1a), by supports at the humeral head and at the elbow, so that it could be rotated around its diaphyseal axis. After precalibration, surface measurements were made with a manual probe at rotations in 10° increments. This allowed parallel slices to be measured at every 5 mm at the level of the proximal and distal epiphyses and every 10 mm along the shaft. The bones were then fixed in rotation for the measurement of points on the articular surface of the humeral head. A total of over 1200 points was digitised for each humerus.

The data were collected in a computer equipped with manual software (Métrosoft-3D; Metrologic Instruments, Meylan, France), which produced three-dimensional images (Fig. 1b). Manipulation on a CAD workstation then gave surface reconstructions and multiplanar reformatted images. The computer software could calculate precisely the diameter, thickness, inclination and retroversion and also model the proximal humerus using simple geometrical figures (Fig. 2a).

The anatomical neck plane (C-D) was that best fitting the periphery of the articular surface.

The epiphyseal sphere was that which best fitted the edges of the articular surface of the humeral head with its centre calculated (O).

The metaphyseal cylinder was the cylinder which best fitted the shape of the upper humeral shaft, with its axis at O'. This cylinder was arbitrarily limited to the proximal half of the bone because there is a change in curvature in the coronal plane half way down the humeral shaft at 10.3 to 15.8 cm from the top of the articular surface.

We defined five axes (Fig. 2a):

![Figure 2a](image-url) Figure 2a – Axes used to characterise the morphological factors: (1) humeral head axis; (2) diaphyseal axis; (3) metaphyseal axis; (4) transepicondylar axis; (5) tangent elbow axis. Figure 2b – Three-dimensional co-ordinate system (see text).
1) the humeral head axis (O-O") was defined as that perpendicular to the anatomical neck taken to the periphery of the articular cartilage;

2) the diaphyseal axis represented the arbitrary axis of rotation of the bones (C-C');

3) the proximal metaphyseal or intramedullary axis is of interest because it represents the theoretical axis of the stem of a prosthesis (C-O');

4) the transepicondylar axis was defined by a line joining the most medial and the most lateral extremities of the distal humerus (V-V'); and

5) the tangent elbow axis was defined by a line parallel to the trochlea and the medial condyle (W-W').

All the morphological factors related to the orientation and location of the articular surface were calculated in relation to the proximal metaphyseal axis for inclination, anteroposterior translation and mediolateral translation, and to the transepicondylar and tangent axes for retroversion. We called the crossing point between the metaphyseal axis and the anatomical neck plane the hinge point.

The axes of reference for the three dimensions of space were then defined (Fig. 2b). The image of each proximal humerus was inclined until the proximal metaphyseal axis was vertical, defining the inferosuperior axis. The images of the bones were then rotated around the proximal metaphyseal axis until the anatomical neck plane appeared as a line. The projection of this line on to a perpendicular to the already defined X axis resulted in a vector which defined the anteroposterior axis. The plane perpendicular to the X-Y plane defined the mediolateral axis. A three-dimensional co-ordinate axis system was thus established with its origin within the metaphyseal cylinder. All the measurements were made in accordance with these projections.

The anatomical humeral parameters measured by this procedure for each specimen included the following (Figs 3a and 3b):

1) the diameter of curvature of the articular surface of the humeral head measured in both coronal and axial planes (distance A-B);

2) the articular surface diameter in both coronal and axial planes, defined as the diameter of the articular surface at the level of the margin of the cartilage (distance C-D);

3) the articular surface thickness, defined as the perpendicular distance from the articular margin to the apex of the diameter of curvature (distance E-F);

4) the inclination angle between the proximal metaphyseal (intramedullary) axis and that perpendicular to the articular margin plane (angle α);

5) the retroversion angle between a perpendicular to the articular margin plane and the transepicondylar (angle β1) or the tangent elbow axes (angle β2);

6) the medial offset which is the perpendicular distance between the axial planes containing the centre of the epiphyseal sphere and the central axis of the metaphyseal cylinder (ΔM = distance O-O' in the coronal plane);

7) the posterior offset which is the perpendicular distance between the coronal plane containing the centre of the epiphyseal sphere and that containing the central axis of the metaphyseal cylinder (ΔP = distance O-O' in the axial plane); and

8) the hinge-point distance which is the distance between the axial plane containing the axis of the cylinder and the upper border of the articular surface (distance C-H).

To verify the sphericity of the humeral head we used the classical method of least-square optimisation, defined as the thickness of a theoretical spherical shell with outer (D1) and inner (D2) theoretical diameters which would contain all digitised points within its thickness. The standard deviation of all data points is a measure of sphericity. For this study we accepted that a three-dimensional shell in which the difference between the two extreme diameters was less than 1 mm (or 2% of the average diameter), could be considered to be a true sphere (D1-D2 < 1 mm).

Surface measurements were made on the outside of each humerus and it could be argued that these were less accurate than intramedullary measurements, and that fitting a cylinder to these data provided a poor geometrical model. To investigate this, we osteotomised ten humeri in the frontal plane and ten in the sagittal plane, then measured with a
calliper at both the inside and outside of the proximal part of the bones. The margins of the cortical bone were nearly parallel with less than 1 mm of difference. The maximum deviation of the cylinder diameter was less than 5 mm from the top to the bottom of the cylinder. This confirmed that extramedullary were comparable with intramedullary measurements, and that a cylinder is an acceptable representation of the geometry of the humeral shaft. Even if the humeral shaft is not a true cylinder, its axis and the theoretical stem axis can be defined. Our use of only the proximal half of the humerus to define it is justified on two facts: first, a prosthetic stem is usually located in the proximal half and secondly, we had observed, from both the computer-generated pictures and our coronal sections of the humeri, that there is a change in curvature of the shaft in the frontal plane below the proximal 13 cm (see Fig. 2a).

The digitising machine was accurate to the order of 10 μm, considered to be insignificant for this application. To determine observer variability, we chose ten specimens randomly. They were independently digitised by two different observers, and the measurements were repeated three weeks later in a blinded format. Analysis of variance showed that the standard deviation for repeat readings by one observer and between two observers was less than 1 mm for linear measurements and less than 1° for angular measurements.

RESULTS

Table I gives a summary of our results. Our important findings are not the standard values but the large variations in the measured parameters.

The diameter of curvature varied from a minimum of 37.1 mm to a maximum of 56.9 mm (mean 46.2). The

Table I. Summary of the variables characterising the humeral specimens

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>Mean</th>
<th>Standard deviation</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter of curvature (humeral head diameter) (mm)</td>
<td>46.2</td>
<td>5.4</td>
<td>37.1</td>
<td>56.9</td>
</tr>
<tr>
<td>Articular surface diameter (mm)</td>
<td>43.3</td>
<td>4.3</td>
<td>36.5</td>
<td>51.7</td>
</tr>
<tr>
<td>Articular surface thickness (mm)</td>
<td>15.2</td>
<td>1.6</td>
<td>12.1</td>
<td>18.2</td>
</tr>
<tr>
<td>Inclination (degrees)*</td>
<td>129.6</td>
<td>2.9</td>
<td>123.2</td>
<td>135.8</td>
</tr>
<tr>
<td>Retroversion (transepicondylar axis) (degrees)</td>
<td>17.9</td>
<td>13.7</td>
<td>-6.7</td>
<td>47.5</td>
</tr>
<tr>
<td>Retroversion (tangent elbow axis) (degrees)</td>
<td>21.5</td>
<td>15.1</td>
<td>-10.3</td>
<td>56.5</td>
</tr>
<tr>
<td>Posterior offset (mm)*</td>
<td>2.6</td>
<td>1.8</td>
<td>-0.8</td>
<td>6.1</td>
</tr>
<tr>
<td>Medial offset (mm)*</td>
<td>6.9</td>
<td>2.0</td>
<td>2.9</td>
<td>10.8</td>
</tr>
</tbody>
</table>

* inclination, posterior offset and medial offset have been calculated related to the metaphyseal axis or theoretical stem axis of a humeral component

Figure 4 – Distribution of diameters of the articular surface. Figure 5 – Distribution of the depth of the articular surface.
difference between the two extreme diameters for each single humeral sphere was less than 1 mm in 88.2% of the specimens, showing that most formed a true sphere as defined above.

The articular surface diameters (distance C-D) are shown in Figure 4 and the distribution of the depth of the humeral head (distance E-F) in Figure 5. We found a strong linear correlation between articular surface diameter and this ‘thickness’ of the humeral head. Regression analysis determined the equation of the regression line as $y = 0.78x + 7.32$, where y was the articular surface diameter and x was the thickness of the humeral head ($r = 0.96$; Fig. 6).

The distribution of the inclination angles of the articular surface with respect to the proximal metaphyseal axis (angle α, neck-shaft angle) is shown in Figure 7, and the distribution of the retroversion angles with respect to the transepicondylar axis (angle β_1) in Figure 8.

![Figure 6](image6.png)
Figure 6 – Relationship between the diameter and the depths of the articular surface. Figure 7 – Distribution of the inclination angle in relation to the metaphyseal axis.

![Figure 8](image8.png)
Distribution of the retroversion angle in relation to the transepicondylar axis.

![Figure 9a](image9a.png)
![Figure 9b](image9b.png)
![Figure 9c](image9c.png)

Fig. 9a
Fig. 9b
Fig. 9c

Translation of the articular head surface related to the theoretical stem axis shown on radiographs: a) medial offset; b) posterior offset; c) combined offset.
The epiphyseal sphere did not lie centrally on the base of the metaphyseal cylinder but was offset in both planes, leading to a combined, medial and posterior, offset of the articular surface (Fig. 9). The posterior offset averaged 2.6 mm (95% CI –0.8 to 6.1), with a distribution shown in Figure 10. The medial offset averaged 6.9 mm (95% CI 2.9 to 10.8) (Fig. 11).

The distance between the theoretical stem axis and the geometrical centre of the articular surface, the hinge-point distance, was less than 1 mm in 72.3% of the humeri, (Fig. 12).

DISCUSSION

Our study has emphasised that the shape of the proximal humerus is more important than its dimensions, because of its variable orientation (inclination and retroversion) and its variable medial and posterior offset. This suggests that restoration of normal anatomy during arthroplasty may be difficult with the relatively fixed geometry of existing prosthetic systems. Failure to match the shape has potential biomechanical consequences due to malposition of the joint line, moving the instant centres of rotation or both.2,3,5,16,18,19 The degree of precision needed for the reconstruction of the proximal humerus is unknown, but other work suggests that it has fairly tight limits. Fischer et al4 have shown that if the centre of curvature is displaced by 20% of its radius (5 mm for an average radius of 25 mm), the lever arm of the rotator cuff will be altered by 20%. Poor prosthetic design or poor surgical technique is known theoretically to lead to problems (Table II),1, 20-23 and alteration of the bony anatomy may also lead to eccentric loading at the periphery of the glenoid, increasing glenoid wear and glenoid loosening.2,7,8

Coronal plane. In the coronal plane there are two variables which may interfere with the positioning of the articular surface: inclination angle and medial offset. The intersection point or hinge point which we describe between the metaphyseal axis and the superior margin of the articular head surface forms a useful surgical guide when performing a hemiarthroplasty. The medullary canal of the humerus should be reamed starting at a point which is lateral on the cut surface. The mean inclination angle of 130° in our study corresponds to those previously reported,9,10,11,15 but the average value is completely relative; its considerable

Figure 10 – Distribution of the posterior offset of the centre of the humeral head relative to the metaphyseal axis. **Figure 11** – Distribution of the medial offset of the centre of the humeral head relative to the metaphyseal axis.

Figure 12

Distribution of the ‘hinge-point’ distance (C-H). The intramedullary axis intersects the plane of the anatomical neck (C-D) almost constantly at point C (top of the articular surface). The distance C-H was less than 1 mm in 72.3% of the bones.
variation in individuals must be kept in mind. Most pros-
theses limit the potential for reproducing the original anato-
my: a humeral cut at 140° inclination in a patient who
originally had only 125° inclination will displace the centre
of rotation proximally and alter the kinematics.

A more useful guide is the orientation of a humeral component to
the original true anatomical neck: this may be more appro-
priate for a specific shoulder than routine orientation to the
same inclination.

The variable medial offset of the
articular surface found in our study has not been reported
previously – this too may create difficulties in restoring the
original bony anatomy with a shoulder prosthesis of fixed
design.

Axial plane. In the axial plane there are also two variables:
the retroversion angle and the posterior offset. The low
average retroversion angle which we found (17.9°) con-
firms other anatomical studies by Broca, Krahl and
Evans and Roberts et al who reported values of 16, 15.6
and 21.4, respectively. More importantly, however, retro-
version of the proximal humerus is highly variable, ranging
from –6.7° to 47.5°. Again, this means that anatomical
reconstruction of the retroversion angle should be individ-
ual, following the landmarks of the true anatomical
neck. Posterior offset also varies, ranging from –0.8 to
6.1 mm. Roberts et al also using an extramedullary
method, reported a posterior offset from 0 to 12 mm, but
Ballmer et al using an intramedullary method, found an
offset ranging from 3 mm anterior to 4 mm posterior. Our
study, like those of Roberts et al and Ballmer et al has
shown that part of what is called retroversion is actually
due to posterior offset; this should be taken into considera-
tion by shoulder surgeons.

Surgical relevance. The monobloc prosthesis developed by
Neer et al for the humeral component remains the ‘gold
standard’ associated with excellent and good results at
long-term follow-up. The first-generation shoulder pros-
hesis met the needs of many patients, but offered only a
mid-range of sizes and did not exactly reproduce the

Table II. Variable orientation (inclination and retroversion) and location (medial offset and posterior offset) of the articular surface of the humeral head, with the pathological consequences and the surgical possibilities of control when using a fixed-design humeral component

<table>
<thead>
<tr>
<th>Articular head surface orientation and location</th>
<th>Potential pathological consequences of error</th>
<th>Surgeon-controllable variables*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inclination</td>
<td>Subacromial impingement (superior “bulging” of the prosthetic head)</td>
<td>Varus/valgus and / or Mediolateral translation</td>
</tr>
<tr>
<td>Medial offset</td>
<td>Glenoid (posterior) impingement (inferior “sliding” of the prosthetic head)</td>
<td></td>
</tr>
<tr>
<td>Retrversion</td>
<td>Coracoid impingement (anterior “bulging” of the prosthetic head)</td>
<td>Anteversion/retroversion and / or Anteroposterior translation</td>
</tr>
<tr>
<td>Posterior offset</td>
<td>Anteroposterior instability (abnormal rotation and/or anteroposterior translation of the humeral component)</td>
<td></td>
</tr>
</tbody>
</table>

* these possibilities are partially or totally reduced with cementless, close-fitting humeral components and/or humeral components with stems which are too long

Two methods of correcting medial offset surgery (a) by implanting the prosthesis with some varus (loose-fit stem) (b) or implanting the prosthesis with some medial translation (loose-fit stem) (c).

Two methods of correcting posterior offset at surgery (a) by posterior translation of the prosthetic head (loose-fit stem) (b) or increasing retroversion with a bone cut in excessive version (c).
of articular surface and improve the soft-tissue balancing.5,7,18,33 The range of stems aims to allow better primary stabilisation and better fixation, but filling the medullary canal with a prosthetic stem may prevent accurate reproduction of the anatomical model by placing the head eccentrically. The close fit of a cementless stem will dictate the position of the prosthetic head and make it much more difficult, if not impossible, to match the medial and posterior offset and so achieve coverage of the bone cut. As emphasised by Ballmer et al6 the fit of such a prosthesis eliminates all but two of the six degrees of freedom, leaving only the depth of insertion and the rotation of its stem to allow adjustment.6 A loosely fitting prosthesis offers more possibilities as regards alignment but its fixation may be questionable. Stem length is another limiting factor: too long a stem may prevent insertion with enough varus, for example, to compensate for a large medial offset, because of the change in curvature of the proximal diaphysis which we observed.

Good clinical results can be achieved with both the modular and non-modular components that are available, but their relatively fixed geometry means that they cannot be truly anatomical when compared with the findings of our study. The shape of the proximal humerus is much more variable than most contemporary designs of humeral component suggest or can accommodate.25,25,32

To try to restore the original three-dimensional geometry, we have developed a new type of humeral component (Aequalis Prosthesis; Tornier Inc, Saint-Ismier, France).37 This third-generation shoulder prosthesis is not only modular but also adaptable to the individual bony anatomy. Prosthetic adaptability, a new concept in shoulder arthroplasty, allows the correct placement of the prosthetic head, with the restoration of normal glenohumeral anatomy and kinematics. The prosthesis also fills the medullary canal with the stem to optimise fixation. The design of this new type of prosthesis allows the individual anatomy to be reproduced (Fig. 15) and incorporates variable inclination, using variably-angled neck components between the stem and the prosthetic head. Individual head retroversion is provided by osteotomy of the articular surface after removal of the crown of osteophytes. The design provides variable posterior and medial offset of the articular surface through an eccentric indexing system (Fig. 15). While soft-tissue balancing is achieved by performing an anterior release, the correct spatial positioning of the humeral head relative to the humerus results in ‘bony balancing’. This combination should result in normal glenohumeral kinematics and decrease abnormal eccentric loads on the glenoid component.

The authors wish to thank Y. A. Ratron, D. Perret and F. Ducret and for their technical assistance, C. Gerber, MD and J. J. P. Warner, MD for providing helpful discussions and D. Boileau, MD for her help in preparing the final manuscript.

One or more of the authors have received or will receive benefits for personal or professional use from a commercial party related directly or indirectly to the subject of this article.

THE JOURNAL OF BONE AND JOINT SURGERY
REFERENCES

