SENSORY AND SYMPATHETIC INNERVATION OF THE VERTEBRAL ENDPLATE IN PATIENTS WITH DEGENERATIVE DISC DISEASE

From the Royal Postgraduate Medical School, Hammersmith Hospital, London, England

We obtained intervertebral discs with cartilage endplates and underlying cancellous bone at operation from patients with degenerative disc disease and then used immunohistochemical techniques to localise the nerves and nerve endings in the specimens. We used antibodies for the ubiquitous neuronal protein gene product 9.5 (PGP 9.5). Immunoreactivity to neuropeptide Y was used to identify autonomic nerves and calcitonin gene-related peptide (CGRP) and substance P to identify sensory nerves. Blood vessels were identified by immunoreactivity with platelet-endothelial cell-adhesion molecule (CD31; PECAM).

In a control group with no known history of chronic back pain, nerve fibres immunoreactive to PGP 9.5 and neuropeptide Y were most closely related to blood vessels, with occasional substance P and CGRP immunoreactivity. In patients with severe back pain and markedly reduced disc height, proliferation of blood vessels and accompanying nerve fibres was observed in the endplate region and underlying vertebral bodies. Many of these nerves were immunoreactive to substance P or CGRP, and in addition, substance P- and CGRP-immunoreactive nociceptors were seen unrelated to blood vessels. Quantification by image analysis showed a marked increase in CGRP-containing sensory nerve fibres compared with normal control subjects.

We speculate that a chemotactic response to products of disc breakdown is responsible for the proliferation of vascularity and CGRP-containing sensory nerves found in the endplate region and vertebral body adjacent to degenerate discs. The neuropeptides substance P and CGRP have potent vasodilatory as well as pain-transmitting effects. The increase in sensory nerve endings suggests increase in blood flow, perhaps as an attempt to augment the nutrition of the degenerate disc. The increase in the density of sensory nerves, and the presence of endplate cartilage defects, strongly suggest that the endplates and vertebral bodies are sources of pain; this may explain the severe pain on movement experienced by some patients with degenerative disc disease.

Received 9 April 1996; Accepted after revision 16 August 1996

Intervertebral disc degeneration is common, affecting a considerable proportion of the population. The aetiology is largely unknown but it is thought that disc nutrition is involved.1 There is radiological narrowing of the affected disc space with sclerosis of the endplates of the adjacent vertebral bodies. Both back pain and referred pain are common, accounting for more cases of sciatica than herniated nucleus pulposus.2 When back pain predominates, the axial structures of the spine, such as the vertebral body, the disc, and the related ligaments, are often the sources of pain.

Several studies have described the sparse innervation of the peripheral annulus fibrosus,3-7 and it is now agreed that the disc itself, comprising the inner annulus and nucleus, is without innervation even when there has been extensive neovascularisation. This suggests that other sites in the spine may cause pain. Punctate lesions of the vertebral endplates are common in patients with the resorptive form of intervertebral disc degeneration. MRI has shown that disc material may herniate into the vertebral body and that blood vessels and fibrotic bone marrow from the vertebral body may invade the disc.2,8 A hypothetical mechanism for pain production has therefore been proposed. Trauma and inflammation may cause the synthesis of factors such as bradykinin and prostanooids. These factors are capable of sensitising silent nociceptors which are usually unresponsive to even max-
imal mechanical stimulation. The nociceptors could then respond to changes in intradiscal pressure on movement and cause back pain. Different types of pain have been described, including both constant dull pain and shooting pain on movement. This suggests that different nerve fibres may be involved such as unmyelinated C-type fibres and thinly myelinated Aδ-type fibres which are characterised by their content of substance P and calcitonin gene-related peptide (CGRP) or CGRP only, respectively.

The nutrition of the disc is essentially by passive diffusion predominantly via vascular channels in the endplate regions, but convective flow may also contribute significantly. We previously demonstrated, using microspheres, that the blood flow to the endplate in experimental models is similar to that in cortical bone. Systemic administration of the neurotransmitters noradrenaline and acetylcholine has been shown to influence the blood flow in the vertebral endplate. It would therefore appear that circulation in the endplate region is controlled by locally released neurotransmitters; this suggests the presence of neural elements within the vertebral body.

An array of neurotransmitters other than noradrenaline and acetylcholine has recently been discovered and they are proposed to play a role as vasoactive and nociceptive agents. We therefore investigated the presence of various types of potentially vasomotor and nociceptive nerve fibres with their differing neuropeptide content within the human vertebral body and endplate.

PATIENTS AND METHODS

We investigated 15 patients of mean age 36 years (17 to 62; Table I) undergoing anterior lumbar discectomy and fusion for degeneration of the disc at one or two spinal levels from L1/L2 to L5/S1; most had severe back pain with or without sciatica. A total of 18 levels was fused and tissue obtained from each.

Similar samples were obtained from seven post-mortem control subjects with no record of chronic low back pain. Histopathology showed no significant endplate defects or other abnormalities in these intervertebral discs or cartilage endplates. Their mean age was 61 years (53 to 69).

Radiography and estimation of loss of disc height. We assessed loss of intervertebral disc height by measuring the ratio between disc height and width, using the method described by Ylikoski and Tallroth. Comparative control measurements for each intervertebral level were made from a consecutive series of 40 routine lateral lumbosacral radiographs which had been reported as normal. The mean disc height to width ratios are listed in Table I.

Tissue preparation. Cores of disc and adjacent vertebral bodies were obtained using dowel cutting instruments. The samples, cylinders of bone-disc-bone, were fixed in Zamboni’s solution for 24 hours at 4°C with one change of the fixative. The tissues were then thoroughly washed with phosphate-buffered saline (PBS) containing 15% sucrose and 0.01% sodium azide, and decalcified in EDTA/PVP solution for four weeks according to the method of Hukkanen et al. They were then thoroughly washed in the above buffer and cryostat blocks were prepared for tissue sectioning.

Immunocytochemistry and antisera. Frozen sections (15 μm) were immunostained according to the avidin-biotin-peroxidase method (Vector Laboratories, Peterborough, UK) with amplification of the end-product by a glucose oxidase-DAB-nickel method. Table II gives the characteristics of protein gene product (PGP 9.5), CGRP, substance P, neuropeptide Y (NPY) and platelet-endothelial cell-adhesion molecule (PECAM) CD31 antisera. These have been described in detail elsewhere. Human spinal cord was used as a positive control to monitor the density of immunoreactivity and non-immune rabbit serum was used as a negative control.

Quantification and statistical analysis. We used a low-light charge-screen coupled CCTV camera (HV-720K, Hitech, Denchi Ltd, Japan) interfaced with a Kontron VIDAS image-processing system to assess the total immunoreactive area in the sections immunostained for PGP 9.5 and CGRP. Nerves which were immunoreactive for substance P were too sparse for reliable quantification. The digital image consisted of a 512 × 512 matrix of pixels with 0 to 256 grey levels at a point. Immunoreactive nerve fibres were counted.
using a ×10 objective magnification. Four non-serial sections were studied in each case giving a total of approximately 30 fields per section. The results of image-analysis quantification were expressed as the mean percentage area of PGP 9.5 or CGRP immunoreactivity of the total fields measured, and all the data are expressed as means ± SEM. Numerical differences between the cases studied were compared using the Mann-Whitney test (non-parametric, two-tailed); a value of p < 0.05 was taken as showing a significant difference between the two groups examined.

RESULTS

Measurement of disc height. Most patients showed a marked loss of intervertebral disc height. The mean reduction was 44.07 ± 6.2% (0 to 86%) according to the height-to-width (H/W) ratio measurements, compared with the lumbosacral radiographs reported as normal (Table I). Innervation of vertebral bodies and cartilage endplates. Medullary cavities of vertebral bodies were shown to be innervated by both autonomic (PGP 9.5 and NPY) and sensory nerve fibres (PGP 9.5, substance P and CGRP) in both the patients and the control group. Perivascular nerve-fibre plexuses, immunoreactive to both PGP 9.5 and NPY, and to a much less degree to substance P and/or CGRP, were seen to enter vertebral bodies through nutrient foramina along with the arteries supplying them. The nerve fibres followed the vasculature into the deeper parts of the vertebral bodies, and ramified towards the cartilage endplates. The density of perivascular PGP 9.5- and NPY-immunoreactive fibres was most marked around large arteries (Fig. 1) and decreased as the vessels divided into arterioles.

Table II. Characteristics of antisera used in the study

<table>
<thead>
<tr>
<th>Antigen</th>
<th>Nature/ localisation</th>
<th>Dilution</th>
<th>Absorption*</th>
<th>Source</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGP 9.5</td>
<td>Ubiquitous neuronal protein</td>
<td>1/6000</td>
<td>N/A†</td>
<td>Ultrace, Cambridge, UK</td>
<td>Doran et al³¹</td>
</tr>
<tr>
<td>CGRP‡</td>
<td>Sensory neuropeptide</td>
<td>1/4000</td>
<td>0.1 nM/ml</td>
<td>Royal Postgraduate Medical School</td>
<td>Merighi et al³²</td>
</tr>
<tr>
<td>Substance P§</td>
<td>Sensory neuropeptide</td>
<td>1/4000</td>
<td>1.0 nM/ml</td>
<td>RPMS</td>
<td>Merighi et al³²</td>
</tr>
<tr>
<td>NPY ¶</td>
<td>Sympathetic neuropeptide</td>
<td>1/4000</td>
<td>1.0 nM/ml</td>
<td>RPMS</td>
<td>Allen et al³³</td>
</tr>
<tr>
<td>CD31¶</td>
<td>Endothelial cells</td>
<td>1/100</td>
<td>N/A</td>
<td>Dr AV Mazarov, Cardiology Research Centre, Moscow, Russia</td>
<td>Newman et al³⁴</td>
</tr>
</tbody>
</table>

* antiserum absorbed with corresponding synthetic peptide; lowest concentration in which a significant reduction in immunoreactivity was noted
† not applicable
‡ synthetic rat α-CGRP peptide, antiserum cross-reacts with β-CGRP
§ synthetic rat peptide, antiserum may cross-react with other tachykinins;
¶ cluster of differentiation

Fig. 1

Dense perivascular innervation is shown by antibodies to PGP 9.5 in a vertebral body near an endplate, taken from a patient with disc degeneration. Varicose fibres terminate locally and thicker bundles are targeted in more peripheral parts of the artery (×210).
There were few substance P- and CGRP-immunoreactive fibres around these vessels. All neuronal epitopes, except NPY, were found in fibres terminating in the endplate region. These very fine nerve fibres were found in or near the endosteal surface of the calcified zone of the endplates, and were mostly free-ending. Several of the endplates studied, however, were found to contain small vascular spaces which occasionally also contained PGP 9.5-, substance P- and CGRP-immunoreactive nerve fibres associated with capillaries.

Many of the intervertebral discs and vertebral bodies were obtained from patients with advanced narrowing of the disc space. In these cases, histopathological findings included destruction of the disc material, erosion of the cartilage endplates, invasion of the bone-marrow space of the vertebral body by disc material, or vice versa, invasion of the intervertebral disc space by fibrotic bone-marrow material, and an increase in the vertebral body bone area (Fig. 2). Immunostaining for PECAM CD31 showed widespread proliferation of arterioles and capillaries which in some cases were seen to penetrate the intervertebral disc together with the fibrotic bone-marrow material (Fig. 3).

Figure 2a – Photomicrograph showing the morphology of an endplate interface taken from a patient with loss of disc height. No major histopathological changes were observed although in some areas the endplates were affected by minor erosions (arrows).

Figure 2b – Photomicrograph showing morphology of a severely affected intervertebral disc and adjacent endplates taken from a patient with very advanced loss of disc height. The intervertebral disc is very disorganised and largely destroyed. The cartilage endplate is very severely eroded and partly calcified. Single chondrocytes can be easily recognised by their strong staining for Toluidine Blue. In these patients, punctate endplate defects were commonly seen (× 32).

Figure 3a – Photomicrograph showing the proliferation of arterioles and capillaries in the vertebral body (a) and vertebral body/endplate interface (b) taken from a patient with severe disc degeneration (PECAM × 80).
Immunostaining for PGP 9.5 showed proliferation of varicose nerve fibres of fine calibre unrelated to the vasculature; these therefore corresponded morphologically to typical free-ending nociceptors (Fig. 4a). Most of these nociceptors were perpendicular to the disc endplate and ramified as they reached endosteal surface of the endplate (Fig. 4b). These findings were further confirmed by immunostaining of serial sections using antibodies for substance P and CGRP (Figs. 4c and 4d). Localisation of PGP 9.5-, substance P- and CGRP-immunoreactive nerve fibres also demonstrated the presence and sprouting of free-ending nociceptors adjacent to the cartilage lesions of the endplate.

Innervation of intervertebral discs. Intervertebral discs themselves were found to contain PGP 9.5-, NPY-, CGRP- and substance P-immunoreactive fibres only in the peripheral parts of the annulus fibrosus. These nerve fibres were mostly perivascular. The central part of the annulus fibrosus and nucleus pulposus was devoid of any neuronal elements, although vascular proliferation into the disc space was evident in patients with severe reduction in disc height.

Image analysis quantification. The mean density of PGP 9.5-immunoreactive nerve fibres in the patient group was $4.0 \times 10^{-7} \pm 0.5 \times 10^{-7}\%$, compared with $4.7 \times 10^{-7} \pm 0.4 \times 10^{-7}\%$ in the control group ($p = 0.327$). The mean density of CGRP-immunoreactive nerve fibres in the patient group was $6.4 \times 10^{-8} \pm 2.0 \times 10^{-8}\%$, compared with $3.6 \times 10^{-8} \pm 1.7 \times 10^{-8}\%$ in the control group.
DISCUSSION

Our study of the innervation of the vertebral endplate has provided new findings on the vascularity of the endplates of degenerate intervertebral discs. We assume that the endplate microcirculation supplies most of the nutrition of at least the nucleus pulposus, and suggest that failure of nutrition, and death of the cells of the disc, is a mechanism of disc degeneration. Such degeneration tends to cause a mixture of back pain and symptoms of nerve-root compression, both neurogenic and radicular. A recent paper has shown a possible explanation for the distribution of pain in such cases. Such symptoms can be treated by decompression alone, or by decompression with fusion, depending on the predominance of back pain. Our patients with this diagnosis were considered to require fusion because of the severity of their back pain. Anterior fusion as opposed to posterolateral intertransverse fusion was postulated to allow eradication of the pain source and give a more mechanically sound fusion.

Failure of nutrition may be reflected in the pattern of the blood vessels and perivascular nerves within the endplate region. We have shown that the vascular networks in vertebrae are innervated by vasomotor nerve fibres, suggesting neural control of disc nutrition. By comparing patterns of innervation in apparently normal post-mortem discs with those in severely degenerate diseased discs, we have shown an increase in the density of nerve fibres containing sensory neuropeptide CGRP in highly localised areas with greater degeneration. This finding suggests a mechanism for the neovascularisation of degenerate discs and is analogous to the chemotactic response thought to be responsible for the development of cartilage canals in the embryology of bone. Quantification of PGP 9.5 immunoreactive fibres did not show an increase in the mean value of nerve density in the patients, which could be explained by the very local sites of increased innervation observed in the sections. The mean density of CGRP immunoreactive fibres, however, was significantly increased.

PGP 9.5 fibres in particular appeared to be perivascular, whereas CGRP fibres were not related to the vasculature, and corresponded to C- and A-δ-type nociceptors in patients with degenerative disc disease. We consider that our observation of local increases in vascularity and innervation in our patients probably represent responses to disc degeneration. The demonstration of sympathetic perivascular innervation in both normal and pathological discs is consistent with the hypothesis that changes in blood flow could contribute to disc degeneration. In a recent cadaver study, angiographic and histological aspects of ingrowth of blood vessels in disc degeneration were examined and it was suggested that vascular changes occurred before disc degeneration at all the spinal levels studied. Normal anasto-
REFERENCES

