CORE DECOMPRESSION OF THE DISTAL FEMUR FOR AVASCULAR NECROSIS OF THE KNEE

MICHAEL A. JACOBS, PETER E. LOEB, DAVID S. HUNGERFORD

From Johns Hopkins University, Baltimore

From 1974 to 1981, we performed 28 core decompressions of the distal femur for pathologically confirmed avascular necrosis. At a mean follow-up of 54 months (range 20 to 140 months) and using the Ficat stages, all seven cases in stage I and stage II had good results. Of 21 cases in stage III, 11 cases had good results, four had poor results, and six needed total knee replacement. There were no significant orthopaedic complications. The procedure is worthwhile and will be more accurate with new methods of imaging.

Avascular necrosis (AVN) of bone presents an extremely difficult problem. Although it has been associated with such conditions as steroid usage, alcoholism, and various metabolic abnormalities, its pathogenesis remains unclear (Ahlbäck, Bauer and Bohne 1968; Cruess 1977; Abeles, Urman and Rothfield 1978; Hungerford and Zizic 1978; Hungerford 1983a; Zizic and Hungerford 1985). In the hip, an association has been made between increased intra-osseous pressure and disease activity (Ficat and Arlet 1980; Zizic, Hungerford and Stevens 1980; Hungerford 1983a; Zizic and Hungerford 1985); this has resulted in the use of core decompression in treatment. Although the reported results of this procedure have varied between different centres, we have had success with it (Zizic et al 1980). As a result, we now apply a similar procedure to the knee, in the hope that this relatively simple treatment will postpone the need for major reconstructive operations for many years.

MATERIAL AND METHODS

From 1974 to 1981 at the Good Samaritan Hospital, Baltimore, we performed 28 core decompressions of the distal femur in 18 patients. The diagnosis of AVN was confirmed by pathological evaluation of the specimen in all cases. During this period three other distal femoral decompressions were performed, but they have been excluded from this study because the pathology was not diagnostic of AVN.

All patients had anteroposterior, lateral, skyline, and standing weight-bearing radiographs of the knee, and some also had tunnel views. Using Ficat’s staging system, there was one case in stage I, six in stage II, and 21 in stage III (Ficat and Arlet 1980; Zizic and Hungerford 1985). There were four men and 14 women, and their average age was 33.5 years (range 19 to 66 years). Eleven patients with 17 affected knees had systemic lupus erythematosus and had been or were on steroids at the time of surgery. Four patients had renal failure (eight knees); two of these had had kidney transplants and were on high doses of steroids. One patient had had treatment for a benign brain tumour and had also had steroid therapy. In the other two patients, no association could be found between AVN and any known risk factor.

All patients had both rest pain and pain on walking, which was moderate or severe and had failed to respond to non-steroidal anti-inflammatory drugs (NSAID) and physiotherapy. All but one of the operated knees showed radiographic changes suggestive of AVN; the exception was in a steroid-dependent patient who had classic radiographic changes in the contralateral knee. The decision to decompress this knee with stage I changes was based on elevated pressure measurements at the time of surgery. No patient had clinical evidence of any internal derangement of the knee and none had previously been arthroscoped. The femorotibial angles of the knees varied from 0° to 9° of anatomical valgus; none were felt to be suitable for re-alignment osteotomies.

Follow-up was from 20 to 140 months (average 54 months). Our assessment of success or failure was based
simply upon the clinical relief of pain, and the need for further surgery. Thus a patient with a good result is without pain or with minimal pain, functions without restrictions and has had no further operation on the affected knee. A patient with moderate pain, limitation of activity, or need for more surgery was recorded as having an unsuccessful result.

SURGICAL TECHNIQUE

The surgical technique is adapted from that used in the hip (Ficat and Arlet 1980; Zizic et al 1980). Intra-osseous pressures are taken by placing a 3 mm rigid Ficat trocar through the metaphyseal bone into the affected condyle from either a medial or lateral stab wound (Zizic et al 1980), localising its position with the image intensifier. Baseline pressures are then recorded, a pressure stress test is performed, and an intra-osseous venogram is carried out in a manner identical to that described for the hip. Baseline pressure greater than 30 mmHg, or pressures that fail to return to under 30 mmHg five

Figure 1

Venous stasis is shown: a significant amount of dye remains at the injection site five minutes after injection.

Fig. 1

Radiographs of 25-year-old woman with a renal transplant and stage III avascular necrosis of the knee, best seen on the tunnel view.

Fig. 2a

Fig. 2b

Fig. 2c

Radiographs taken eight years later show some progression of disease, but she continues to have a very good clinical result with only minimal discomfort and no need for walking aids.

Fig. 2d

Fig. 2e
minutes after the stress test is begun are positive. A positive venogram shows reflux into the shaft of the femur, or stasis of the dye in the distal femur for a minimum of five minutes (Fig. 1). Venograms were performed on all patients who did not have elevated baseline pressures.

Decompression is performed through a 2.5 cm distal femoral incision made on the side with the most affected condyle. If both condyles are affected, a medial incision is used. The margin of either vastus medialis or vastus lateralis is exposed and retracted anteriorly to expose bone; the joint space is not entered. The cortex is breached with a standard expanding drill bit, and an 8 mm core biopsy is removed using the Michele biopsy instruments. The location of the biopsy is checked by image intensification; subchondral bone is not breached.

Postoperatively, patients begin full active and passive knee movements on the second day and walk with crutches, remaining strictly non-weight-bearing for eight weeks. After this period, weight-bearing is gradually increased to full over another 8-week period.

RESULTS

There were no orthopaedic complications from the procedure and all seven patients with stage I or II disease continue to have good clinical results. Radiographically, the single stage I case has not progressed to stage II and three of the six in stage II have remained stable, while the other three progressed to stage III. Of 21 cases in stage III at operation, 11 have good results at review (Figs 2 and 3). Of the other 10 cases, four have had progressive pain and will probably require total knee replacement in the near future and six have already had total knee replacement at an average of 23.8 months after decompression (range 6 to 40 months).

Radiographically, in at least three of the stage III cases with good clinical results, there has been some radiographic deterioration, primarily by increasing collapse of the femoral condyles.

In 50% of the series, the baseline pressures were normal and in 88% the stress test was positive. In the 12% of cases with a normal stress test and normal baseline
pressure the venograms were positive. Because of the small number of patients and the recurrent nature of the disease process, no correlation could be made between the size and duration of the steroid dosage and the result.

DISCUSSION

Although avascular necrosis of the hip has received a great deal of attention, involvement of the knee has been largely ignored. Based upon our experience with core decompression in the hip, we applied the same treatment to the knee. The procedure is simple to perform and has a low complication rate with no instances of fracture through the core site, infection, or thrombophlebitis. For patients with stage I and II disease the results were extremely gratifying, giving pain relief which has continued. In patients with stage III disease the results were more erratic, but, given the low morbidity, successful results in 52% after an average follow-up of 54 months suggest that the operation has a role in stage III. This is underscored by the young age of many of the patients and the fact that the only alternative may be joint replacement.

We hope to refine the indications by the use of better pre-operative imaging. In this study, the lesions were assessed with only anteroposterior, lateral, and skyline radiographs, which allow only a crude estimate of their size and extent. We were therefore unable to assess the results in terms of the size of the lesion. With CT and MRI scanning (Fig. 4), we can now get much more precise assessment of the lesions (Pykett et al 1982; Moon, Genant, Davis et al 1983; Moon, Genant, Helms et al 1983). By following these more recent patients, it should be possible to delineate the maximal size of lesion that can be treated successfully by core decompression. Similarly, there may be a greater role for arthroscopic evaluation and possible debridement in young patients with advanced stage III disease. Our present series is far too small to delineate the dose parameters of steroid therapy that may affect the outcome. This too will be possible in larger series in combination with better imaging techniques.

Conclusions. Core decompression at the knee should be considered in patients with severe pain due to avascular necrosis and with femorotibial alignment within 5° or 6° of normal. It is a simple procedure with a low complica-
tion rate and offers an excellent chance of pain relief in patients with stage I and II disease and a 50% chance of pain relief in patients with stage III disease. It should not, however, be considered as an alternative to tibial and distal femoral osteotomies in patients with femoro-tibial malalignment in addition to AVN.

No benefits in any form have been received or will be received from a commercial party related directly or indirectly to the subject of this article.

REFERENCES

Hungerford DS. Pathogenesis of ischemic necrosis of the femoral head. AAOS Instructional Course Lecture 1983a:32:252-60.

